Broom Barns School

Progression in Mental Mathematics

A pathway from EYFS to Year 6

Broom Barns School

Nursery

Number and Place Value

Recite numbers past 5.
Develop fast recognition of up to 3 objects, without having to count them individually ('subitising')

Say one number for each item in order: 1,2,3,4,5.

Snow that the last number reached when counting a small set of objects tells you how many there are in total ('cardinal principle').

Show 'finger numbers' up to 5 .

Link numerals and amounts: for example, showing the right number of objects to match the numeral, up to 5 .

Experiment with their own symbols and marks as well as numerals.

Addition and Subtraction

Compare two groups of objects, saying when they have the same number

Show an interest in number problems.

Separate a group of three or four objects in different ways, beginning to recognise that the total is still the same.

Solve real world mathematical
problems with numbers up to 5 .

Compare quantities using language 'more than' and 'fewer than'.

Multiplication

Compare two groups of objects, saying when they have the same number.

Show an interest in number problems.

Broom Barns School

Reception

Number and Place Value

Count objects, actions and sounds.
Subitise to 5.
Link the number symbol (numeral) with its cardinal number value.

Count verbally to 20 .
Understand the one more than/ one less than relationship between consecutive numbers.

Explore the composition of numbers to 10.

Have a deep understanding of the composition of the numbers to 10 .

Addition and Subtraction

Use the language of more and fewer to compare two sets of objects.

Find the total number of items in two groups by counting all of them.

Find one more and one less from a group of up to ten objects.

Automatically recall number bonds within 10.
In practical activities, use the vocabulary involved in adding and subtracting.

Explore and represent patterns within numbers up to 10 , including evens and odds, double facts and how quantities can be distributed evenly.

Record, using marks that they can interpret and explain.
Use the language of greater than, less than and the same as with quantities up to 10 .

Multiplication and Division

Begin to identify own mathematical problems based on own interests.

Represent patterns such as doubles and equal quantities.

Solve problems using doubling, halving and sharing.

Broom Barns School

Numbers to 10 recognising dot patterns on dice / dominoes and tens frames.

I can see three and three and one makes seven.
Four and one and one and one makes seven.

Progression

Matching patterns where number of dots is equal.
Matching patterns where the number of dots is equal but the pattern is arranged differently.

Finding dot patterns that are one more or one less than the pattern displayed.
Identifying numbers within the whole set of dots (see example above).

Addition and Subtraction
Core concept: COMPARISON
Core skill: COUNTING ON and BACK

Pupils count on to find the total and difference.

Core concept: CONSERVATION

Core skill: REGROUPING

Part part whole model drawing out an understanding of commutativity.

Pupils to extract fact families from the models and explore commutativity.

Multiplication and Division

Core concept: UNITISING

Equal grouping drawing out understanding of repeated addition.

Year 1
Numbers to 10

Broom Barns School

Number and Place Value

Broom Barns School

Number and Place Value

Broom Barns School

Broom Barns School

Broom Barns School

Broom Barns School

Number and Place Value

Broom Barns School

Broom Barns School

Broom Barns School

Number and Place Value

Broom Barns School

Broom Barns School

Broom Barns School

Broom Barns School

Broom Barns School

Key Stage 1 Examples

Broom Barns School

Key facts

Year One Recall

- Number bonds within 10 including a + b + c = d, the effect of adding zero and missing number calculations
- Reordering to find tens and some more e.g. $4+5+6=$
- Doubles within 10 including subtraction e.g. 6-3=3 and missing numbers e.g. $6-\square=3$
- Structured subitisation on tens frame to 20

Year Two Recal

- Addition and subtraction facts to 20
- Multiplication and division facts 2,5 and $10 \times$ tables
- Multiplication facts for $3 \times$ tables
- Number of minutes in an hour; number of hours in a day
- Coin recognition up to $£ 2$
- Doubles to 20

Broom Barns School

Broom Barns School

Number and Place Value	Addition and Subtraction	Multiplication and Division
Repeat this understanding to explore tenths through the same concrete and pictorial representations securing the multiplicative relationship. 2 tens, 3 ones and 6 tenths.	This can also be applied to regroup to bridge through multiples of 100 e.g. $70+50$ or $460+80$. $70+50=100+20$ $460+80=500+40$ This sum is easier if I regroup the 80 into 40 and add it to the 460 to make 500 .	Ensure pupils can double and halve 2-digit numbers and generalise what happens when we halve a number with an odd multiple of tens. Extend to halving odd multiples of 100 and later odd ones. Pupils should also be able to use doubles knowledge to solve near double questions e.g. $70+60$.

Broom Barns School

Broom Barns School

Broom Barns School

Broom Barns School

Number and Place Value

Broom Barns School

Number and Place Value	Addition and Subtraction	Multiplication and Division
Core concept: COUNTING and PLACE VALUE	Core concept: COMPARISON	Core concept: UNITISING and SCALING
Core skill: COUNTING ON and BACK	Core skill: COUNTING ON and BACK	Core skill: COUNTING ON and BACK
Counting on and back in tens and hundreds from any number allowing children to notice in the pattern what changes as a result (and what doesn't change).	Count on to find the difference drawing out the use of complements to benchmark numbers e.g. 916-897.	If I know $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 5, \mathrm{x} 10$, what else can I work out?

Broom Barns School

Broom Barns School

Broom Barns School

Broom Barns School

Number and Place Value

Broom Barns School

Number and Place Value
Core concept: UNITISING
Core skill: REGROUPING

Addition and Subtraction
Core concept: UNITISING
Core skill: REGROUPING

Multiplication and Division
Core concept: CONSERVATION and SCALING

Core skill: REGROUPING

Think 5x fact

Application of the distributive law
Regrouping the multiplier (number of groups). For example, 8×6.

$$
8 \times 6=5 \times 6+3 \times 6
$$

Broom Barns School

Broom Barns School

Number and Place Value

Broom Barns School

Number and Place Value

Broom Barns School

Lower KS2 examples

Broom Barns School

Key facts

Year Three Recall

- Sums and differences between pairs of numbers which are multiples of 10 and 100
- Doubles and halves of multiples of 10 or 100
- Complements to 100
- Complements to 60 (time)
- Complements of tenths that make 1
- Complements of fractions with the same denominator that make 1 e.g. $3 / 7+4 / 7=1$
- $\times 3, \times 4, \times 8$ facts including division facts
- Number of seconds in a minute
- Number of days in a month and in a year including a leap year

Year Four Recall

- Review addition and subtraction facts within 20 , ensure application to 10,100 and $1000(6+3,60+30,600+300,6000+3000)$
- Doubles and halves of multiples of 10,100 or $1000(6+6,60+60$, $600+600,6000+6000$)
- All multiplication and division facts to 12×12
- Multiplication and division by zero and one facts
- Division and multiplication by 10 and 100
- Conversion of kilometres to metres, hours to minutes, years to months, weeks to days
- Complements of hundredths that make 1

Broom Barns School

Years 5 and 6

Number and Place Value	Addition and Subtraction	Multiplication and Division
Core concept: MAGNITUDE and COMPARISON Introduce pupils to a range of calculations in which a secure understanding of place value is required to support the solution. For example, $2.005+3.24$. Estimation drawing out the concept of 'distance' of numbers to target numbers / benchmarks in preparation for rounding. 20,000 and ${ }^{000000000-0000000000} 0000000000 \times 000-$ I can see that 20,034 is 4 from 20,030 and 6 from 20,040. 20,034 is nearer to 20,030 than to 20,040 . Comparison to benchmark numbers Using number knowledge to look for 'nearly numbers' in calculations. $7834+79,996$ 79,996 is 4 less than 80,000 and that's an easier number to add.	Core concept: UNITISING Core skill: REGROUPING Think Regroup for addition Part whole drawing out the skill of regrouping numbers to allow bridging through hundreds, tens and ones. Ask pupils to reason why they may wish to reorder the numbers. Pupils should continue LKS2 learning and be encouraged to explore multiple ways of regrouping both addends (refer to number and place value experiences). Only a limited example is shown here.	Core concept: UNITISING Core skill: REGROUPING Think Regroup for multiplication and division drawing out the distributive law for both multiplication and division and encouraging pupils to regroup and multiply in a variety of ways, evaluating the most useful. $24 \times 3=$

Broom Barns School

Number and Place Value	Addition and Subtraction	Multiplication and Division
Rounding Round 136,521 to the nearest 100,1000 and 10,000. Rounding as estimation for multiplication and division. $688 \times 79=$ 688 rounds to 700 and 79 rounds to 80. The calculation 688×79 is close to $700 \times$ 80 , which is 56,000 . $789 \div 79=$ 789 rounds to 800 and 79 rounds to 80 . The calculation $789 \div 80$ is close to $800 \div$ 80 , which equals 10.	Then adapted to decimal and fractional part whole as well as measures such as time and money. For example, $\frac{4}{7}+\frac{5}{7}=$ Here both addends can be regrouped using complements to 1 and some more. Extend into UKS2 by converting fractions into equivalents with common denominators. Beginning with conversions where no regrouping is required. For example: $\begin{aligned} & \frac{2}{10}+\frac{2}{5}=\square \\ & \frac{2}{10}+\frac{4}{10}=\square\| \|\| \|\| \| \end{aligned}$	$24 \times 3=$

Broom Barns School

Broom Barns School

Number and Place Value	Addition and Subtraction	Think regroup for subtraction Part whole drawing out the skill of regrouping either the minuend or the subtrahend. Pupils should be encouraged to explore multiple ways of regrouping both the minuend and subtrahend (refer to number and place value experiences). For example, $540-70$

Broom Barns School

Number and Place Value	Addition and Subtraction	Multiplication and Division
	Then adapted to decimal and fractional part whole as well as measures such as time and money. For example, $1 \frac{2}{7}-\frac{5}{7}=$ I can regroup the subtrahend $\frac{5}{7}$ into $\frac{2}{7}$ and $\frac{3}{7}$. Then I can take away the $\frac{2}{7}$ leaving $\frac{7}{7}$ or 1 and finally take away $\frac{3}{7}$.	

Broom Barns School

Number and Place Value	Addition and Subtraction	Multiplication and Division
	Extend into UKS2 by converting fractions into equivalents with common denominators. Beginning with conversions where no regrouping is required. For example, $\frac{2}{10}-\frac{1}{20}=$ Progress to examples where regrouping would be a valid strategy. For example, $1 \frac{3}{10}-\frac{4}{5}=$ Pupils will have to know that $\frac{4}{5}=\frac{8}{10}$ before they can solve the calculation. Then they could regroup either the subtrahend or the minuend. For example, $1 \frac{3}{10}-\frac{8}{10}=$ Partitioning the subtrahend Partitioning the minuend	

Broom Barns School

Number and Place Value	Addition and Subtraction	Multiplication and Division
	Core concept: CONSERVATION	Core concept: CONSERVATION
	Reordering and finding complements across a range of numbers.	Core skill: REARRANGING
		Factorisation drawing on the associative law for multiplication and related division facts.
	For example:	For example, $24 \times 3=12 \times 3 \times 2$
	$\begin{array}{cc} 47+603 & 0.45+1.63 \\ 0.15+1.85 & £ 3.99+£ 7.80+£ 2.01 \end{array}$	
	Two decimal numbers add together to make a total of 1. One number is 0.0006 . What is the other number?	Two and twelve are factors of 24 and I find it easier to calculate 12×3 first and then double it. Doubling and halving
		$12 \times 2.5=\quad$$12 \times 2.5=6 \times 5$. I halved the 12 and doubled the 2.5 to make the calculation easier.$16 \times 6 \frac{1}{4}=\quad$
		$16 \times 61 / 4=8 \times 121 / 2=4 \times 25=100$ I can make this easier for me by doubling and doubling again the $61 / 4$. This means I have to halve and halve again the 16 to maintain the area. Now I get $4 \times 25=100$.
		Application to KS2 example (Q11 paper 1 2016): $\begin{aligned} 71 \times 8 & =142 \times 4 \\ & =284 \times 2 \end{aligned}$

Broom Barns School

Number and Place Value	Addition and Subtraction	Multiplication and Division
	Core concept: CONSERVATION and COMPARISON Core skill: REBALANCING Equal sum drawing out the concept of equality when rebalancing the numbers in an addition calculation. Pupils use bead strings to demonstrate that: $7+5=10+2$ Apply concept to range of numbers and missing number problems. $\text { For example, } 24+\square=30+3 .$ See Year 3 and 4 examples These should include rehearsal using calculations such as: $\begin{array}{cc} 39+52 & 345+198 \\ 0.39+6.54 & 5.1+2.7=\square+4.8 \end{array}$	Halving and halving for division Once pupils are confident with the 'halve and double' strategy for multiplication, they will try to apply it to division and will need to understand why their answers do not make sense. Stress again the importance of estimation. Investigate the principle of halving and halving with pupils. When I am dividing by 4, I like to halve the number and halve it again. This strategy is best explored through practical contexts so pupils can clearly see that even though the dividend and the divisor are changing the quotient remains constant.

Broom Barns School

Number and Place Value	Addition and Subtraction	Multiplication and Division
	Ensure pupils are secure with the concept of equal sum before considering questions such as: $7834+79,996$ 79,996 is 4 away from 80,000 . I can rebalance the sum by taking 4 from 7834 and giving it to the 79,996. Now I have $80,000+7,830=87,830$. Compensation with the same calculation supports pupil's multi-strategy approach. Pupils can continue to evaluate strategies. $7834+79,996$ Adding 79,996 is like adding 80,000 and subtracting 4. $\text { I can do } 80,000+7834-4=87,830$ Improve multi-strategy approaches by asking for two different ways of solving calculations such as: $=5,756+8,643 \quad 16.98+23.214=$ \square	For example, If I shared 12 cookies among 4 children each child would get 3 cookies. $12 \div 4=3$ I can also see that 6 cookies shared between 2 people would give the same group size. The size of the group hasn't changed. So $12 \div 4$ can be changed into $6 \div 2$. As I am trying to find out the group size, I can also see that $3 \div 1$ gives me the group size. So $12 \div 4$ can be thought of as $6 \div 3$ and $3 \div 1$. I can see all of these in the array. Applying this conceptual understanding to larger numbers encourages playfulness with division. $\begin{array}{\|l\|} \hline 364 \div 16= \\ 182 \div 8= \\ 91 \div 4= \\ 45.5 \div 2= \\ 22.75 \end{array} \quad \begin{gathered} \text { I saw that I could halve } \\ \\ \\ \\ \\ \\ \\ \\ \text { both the divisor, so I did to see if it } \\ \text { made it easier. Then I } \\ \text { realised that I could halve } \\ \text { them again and again. } \end{gathered}$ Apply core concepts in the context of fractions.

Broom Barns School

Broom Barns School

Number and Place Value

Broom Barns School

Broom Barns School

Broom Barns School

Upper KS2 examples

Broom Barns School

Upper KS2 examples (continued)

